Parametrix's logo

Parametrix

Parametrix's logo Parametrix's logo Parametrix's logo Parametrix's logo
Technical drawing --- Dessin technique --- Dessin industriel --- 2D parametric designs

Motorized axis

This page sizes the gears and motors for reaching the requirements of a motorized axis.

Parameter description

torque requirements top-level axis parameters gear-ring overview gear module epicyclic gearing

Numerical application

Symbol Parameter Value
Motorized axis requirements
M Mass of load (kg)
D1 Distance axis-load (m)
T1{T_1} Load torque (N.m) 2943.00 N.m T1=9.81MD1{T_1 = 9.81 * M * D_1}
Fs{F_s} Security factor
T2{T_2} Given torque (N.m) 11772.00 N.m T2=T1Fs{T_2 = T_1 * F_s}
tht{t_{ht}} Time for half turn (s)
tot{t_{ot}} Time for one turn (s) 240.00 s tot=2tht{t_{ot} = 2 * t_{ht}}
s2{s_2} Axis rotation speed (rpm) 0.25 rpm s2=60tot{s_2 = \frac{60}{t_{ot}}}
P2{P_2} Power at axis (W) 308.19 W P2=T22πtot{P_2 = \frac{T_2 * 2 * \pi}{t_{ot}}}
Axis gear-rings and gear-wheels
Nr{N_r} Number of gear-rings
Nw{N_w} Number of gear-wheels
mw{m_w} Module of gear-wheel (mm)
Zw{Z_w} Number of teeth of gear-wheel
Dw{D_w} Diameter of gear-wheel (mm) 250.00 mm Dw=(Zw+2)mw{D_w = (Z_w + 2) * m_w}
Marginw{Margin_w} Margin between gear-wheels (%)
Dr{D_r} Diameter of gear-ring (mm) 990.00 mm Dr=(Zr+4)mw{D_r = (Z_r + 4) * m_w}
Zr{Z_r} Number of teeth of gear-ring 95 Zr=f(Nw,Zw,Marginw){Z_r = f(N_w, Z_w, Margin_w)}
Rr/w{R_{r/w}} Ratio ring / gear-wheel 1 : 4.13 Rr/w=ZwZr{R_{r/w} = \frac{Z_w}{Z_r}}
E{E} Gear efficiency (%)
T3{T_3} Torque of gear-wheel (N.m) 222.66 N.m T3=T2Rr/wNrNwE{T_3 = \frac{T_2 * R_{r/w}}{N_r * N_w * E}}
t3{t_3} Gear-wheel rotation time (s) 58.11 s t3=totRr/w{t_3 = t_{ot} * R_{r/w}}
s3{s_3} Gear-wheel rotation speed (rpm) 1.03 rpm s3=60t3{s_3 = \frac{60}{t_3}}
P3{P_3} Power at gear-wheel (W) 24.08 W P3=T32πt3{P_3 = \frac{T_3 * 2 * \pi}{t_3}}
Reductor-1
Nr1p{N_{r1p}} Number of planets of reductor-1
mr1{m_{r1}} Module of epicyclic of reductor-1 (mm)
Zr1p{Z_{r1p}} Number of teeth of planet-1
Dr1p{D_{r1p}} Diameter of planet-1 (mm) 50.00 mm Dr1p=(Zr1p+2)mr1{D_{r1p} = (Z_{r1p} + 2) * m_{r1}}
Dr1r{D_{r1r}} Diameter of ring of reductor-1 (mm) 198.00 mm Dr1r=(Zr1r+4)mr1{D_{r1r} = (Z_{r1r} + 4) * m_{r1}}
Zr1r{Z_{r1r}} Number of teeth of ring-1 95 Zr1r=f(Nr1p,Zr1p,Marginw){Z_{r1r} = f(N_{r1p}, Z_{r1p}, Margin_w)}
Zr1s{Z_{r1s}} Number of teeth of sun-1 49 Zr1s=Zr1r2Zr1p{Z_{r1s} = Z_{r1r} - 2 * Z_{r1p}}
Rr11{R_{r1-1}} Ratio of one stage of reductor-1 1 : 2.94 Rr11=Zr1sZr1sZr1r{R_{r1-1} = \frac{Z_{r1s}}{Z_{r1s} * Z_{r1r}}}
Nr1{N_{r1}} Number of stages of reductor-1
Rr1{R_{r1}} Ratio of reductor-1 1 : 25.38 Rr1=Rr11Nr1{R_{r1} = {R_{r1-1}}^{N_{r1}}}
Er1{E_{r1}} Efficiency of reductor-1 51.20 % Er1=ENr1{E_{r1} = E^{N_{r1}}}
T4{T_4} Reductor-1 input torque (N.m) 17.13 N.m T4=T3Rr1Er1{T_4 = T_3 * R_{r1} * E_{r1}}
f4{f_4} Reductor-1 input rotation speed (Hz) 0.44 Hz f4=1t3Rr1{f_4 = \frac{1}{t_3 * R_{r1}}}
s4{s_4} Reductor-1 input rotation speed (rpm) 26.21 rpm s4=60f4{s_4 = 60 * f_4}
P4{P_4} Power at reductor-1 input (W) 47.03 W P4=T42πf4{P_4 = T_4 * 2 * \pi * f_4}
From Reductor-1 input to axis
Ra/r1i{R_{a/r1i}} Ratio from reductor-1 input to axis 1 : 104.83
Ea/r1i{E_{a/r1i}} Efficiency from reductor-1 input to axis 40.96 %
Reductor-2
Nr2p{N_{r2p}} Number of planets of reductor-2
mr2{m_{r2}} Module of epicyclic of reductor-2 (mm)
Zr2p{Z_{r2p}} Number of teeth of planet-2
Dr2p{D_{r2p}} Diameter of planet-2 (mm) 25.00 mm
Dr2r{D_{r2r}} Diameter of ring of reductor-2 (mm) 99.00 mm
Zr2r{Z_{r2r}} Number of teeth of ring-2 95
Zr2s{Z_{r2s}} Number of teeth of sun-2 49
Rr2{R_{r2}} Ratio of one stage of reductor-2 1 : 2.94
Nr21{N_{r2-1}} Number of stages of reductor-2
Nr2{N_{r2}} Ratio of reductor-2 1 : 644.17
Er2{E_{r2}} Efficiency of reductor-2 26.21 %
T5{T_5} Reductor-2 input torque (N.m) 0.10 N.m
f5{f_5} Reductor-2 input rotation speed (Hz) 281.37 Hz
s5{s_5} Reductor-2 input rotation speed (rpm) 16882.37 rpm
P5{P_5} Power at reductor-2 input (W) 179.39 W
From Reductor-2 input to axis
Ra/r2i{R_{a/r2i}} Ratio from reductor-2 input to axis 1 : 67529.49
Ea/r2i{E_{a/r2i}} Efficiency from reductor-2 input to axis 10.74 %
Electrical reluctance motor
Fs{F_s} Force on one shuttle (N)
Ds{D_s} Shuttle diameter (mm) 338.23 mm Ds=T5Fs{D_s = \frac{T_5}{F_s}}