Parametrix's logo

Parametrix

Parametrix's logo Parametrix's logo Parametrix's logo Parametrix's logo
Technical drawing --- Dessin industriel --- 2D parametric designs --- Software defined modelling

Magnetic circuit

This page provides an overview of magnetic circuits for modelizing the reluctance motor.

The reluctance motor

The force exercised by a electrical reluctance motor is due to the minimization of the magnetic energy of the magnetic circuit.

Advantages of the reluctance motor:

  • no permanent magnet
  • consists mostly of soft iron and wiring
  • simple mechanics
  • also efficient at high speed
  • only limited by the electrical power source and electrical switching speed

Disadvantages of the reluctance motor:

  • Advanced electronics
  • Requires current sensors and position sensor

Magnetic circuits

Physical laws

Definitions:

  • : magnetomotive force (unit: A)
  • 𝛷 : magnetic flux (unit: Wb or H.A or kg.m2.s2.A1)
  • : reluctance (unit: H1 or kg1.m2.s2.A2)
  • N : number of wire loops
  • i : electric current in one wire loops (unit: A)
  • L : length of the magnetic circuit (unit: m)
  • S : area of a section of the magnetic circuit (unit: m2)
  • H : magnetizing field (unit: A.m1)
  • B : magnetic flux density (unit: T or kg.s2.A1)
  • μ : magnetic permeability (unit: H.m1 or kg.m.s2.A2)
  • μ0 : vacuum magnetic permeability : μ0=1.256×106H.m1

Laws at macroscopic scale (from integral equations):

  • =Ni
  • 𝛷=
  • =LμS=Lμrμ0S

Laws at microscopic scale (from differential equations):

  • H=L=𝛷μS
  • B=𝛷S=μH=μrμ0H
  • μ=μrμ0=BH

Energy:

  • um : magnetic energy density (unit: J.m3 or kg.m1.s2)
  • um=BH2=B22μ=B22μrμ0
  • Em : energy of a magnetic circuit (unit: J or kg.m2.s2)
  • Em=Vum

Electrical circuit:

  • e : electromotive force of a turn (unit: V or kg.m2.s3.A1)
  • u : electromotive force of the winding (unit: V or kg.m2.s3.A1)
  • : inductance of a solenoid (unit: H or kg.m2.s2.A2)
  • e=d𝛷dt
  • u=Ne=Nd𝛷dt
  • if constant over time
    • u=N2didt
    • Let's define =N2
    • =N2=N𝛷i=μN2SL
    • u=didt
    • N𝛷=i
    • Em=Timeiu=Timeididt=i22

Regular torus

regular torus
  • L=2πR (length of the torus)
  • =Ni
  • =LμS
  • 𝛷==μSNiL
  • B=𝛷S=μNiL
  • Em =Vum =VB22μ =B22μLS =μSN2i22L =i22
  • =μSN2L=μrμ0SN2L
MaterialRelative permeability
Air1
Iron 99.95200 000
Iron 99.85000
Soft iron5000
Cobalt250
Nickel600
Cobalt-iron18000
Mu-matierial50 000
Permalloy (nickel-iron)1000 000
SymbolParameterValue
μrRelative permeability
RTorus radius (mm)
STorus section area (mm2)
NNumber of turns
iCurrent in the winding (A)
LTorus length (mm)94.2 mm
Magnetomotive force (A)6.000e+3 A
Reluctance (H1)1.500e+5 H1
𝛷Magnetic flux (H.A)4.000e-2 H.A
BMagnetic field (T)4.000e+2 T
EmMagnetic energy (J)1.200e+2 J
Inductance (H)1.067e+2 H

Torus with swelling

torus with swelling
  • =Ni
  • =1+2=L1μS1+L2μS2 =L1S2+L2S1μS1S2
  • 𝛷==μS1S2NiL1S2+L2S1
    • B1=𝛷S1=μS2NiL1S2+L2S1
    • B2=𝛷S2=μS1NiL1S2+L2S1
  • Em =VB22μ =V1B122μ+V2B222μ =B122μL1S1+B222μL2S2 =μN2i22S1S2L1S2+L2S1
  • =μN2S1S2L1S2+L2S1
SymbolParameterValue
L2Percentage of torus with L2 (%)
S2Percentage of S2 compare to S1 (%)
L1Length of L1 (mm)66.0 mm
S1Area of S1 (mm2)100.0 mm2
L2Length of L2 (mm)28.3 mm
S2Area of S2 (mm2)200.0 mm2
Magnetomotive force (A)6.000e+3 A
Reluctance (H1)1.275e+5 H1
𝛷Magnetic flux (H.A)4.706e-2 H.A
B1Magnetic field (T)4.706e+2 T
B2Magnetic field (T)2.353e+2 T
EmMagnetic energy (J)1.412e+2 J
Inductance (H)1.255e+2 H

Torus with air gap

torus with air gap
  • =Ni
  • =L+G=Lμrμ0S+Gμ0S =L+μrGμrμ0S
  • 𝛷==μrμ0SNiL+μrG
  • B=𝛷S=μrμ0NiL+μrG
  • Em =VB22μ =V1B22μrμ0+V2B22μ0 =B22μrμ0LS+B22μ0GS =B2S2μrμ0(L+μrG) =μrμ0SN2i22(L+μrG)
  • =μrμ0SN2L+μrG
SymbolParameterValue
GThe thickness of air-gap (m)
Magnetomotive force (A)6.000e+3 A
Reluctance (H1)8.108e+6 H1
𝛷Magnetic flux (H.A)7.400e-4 H.A
BLMagnetic field (T)7.400e+0 T
BGMagnetic field (T)7.400e+0 T
EmMagnetic energy (J)2.220e+0 J
Inductance (H)1.973e+0 H

Torus with shuttle

torus with shuttle top view of air gap and shuttle
  • =Ni
    • =L+11G1+1G2
    • L=Lμrμ0AB
    • G1=Gμ0xB
    • G2=Gμrμ0(Ax)B
    • =xL(1μr)+μrA(L+G)μrμ0AB(x(1μr)+μrA)
    • x=0=L+Gμrμ0AB
    • x=A=L(1+μrG)μrμ0AB>x=0
  • 𝛷= =μrμ0ABNi(x(1μr)+μrA)xL(1μr)+μrA(L+G)
    • BL=𝛷AB =μrμ0Ni(x(1μr)+μrA)xL(1μr)+μrA(L+G)
    • BG1BL
    • BG2BL
  • Em =VLBL22μrμ0 +VG1BG122μ0 +VG2BG222μrμ0
  • =N2
  • Fx=Emx
SymbolParameterValue
μrRelative permeability of the shuttle
ALength of the air-gap (mm)
BWidth of the air-gap (mm)
xShuttle position (%)
STorus section area (mm2)100.0 mm2
SairAir area (mm2)50.0 mm2
SshuttleShuttle area (mm2)50.0 mm2
Magnetomotive force (A)6.000e+3 A
Reluctance (H1)1.532e+5 H1
𝛷Magnetic flux (H.A)3.917e-2 H.A
BLMagnetic field in torus (T)3.917e+2 T
BGairMagnetic field in air-gap (T)3.917e+2 T
BGshuttleMagnetic field in shuttle (T)3.917e+2 T
EmMagnetic energy (J)3.168e+3 J
Inductance (H)1.045e+2 H
FxForce (N)5.840e+1 N

Torus with realistic shuttle

torus with a realistic shuttle
  • =Ni
    • =L+H+11G1+1G2
    • L=Lμrμ0AB
    • G1=Gμ0xB
    • G2=Gμrμ0(Ax)B
    • H=Hμ0AB
  • 𝛷=
    • BL=BH=𝛷AB
    • BG1BL
    • BG2BL
  • Em =VLBL22μrμ0 +VG1BG122μ0 +VG2BG222μrμ0 +VHBH22μ0
  • =N2
  • Fx=Emx
SymbolParameterValue
HThickness of slack (mm)
xShuttle position (%)
Magnetomotive force (A)6.000e+3 A
Reluctance (H1)1.745e+6 H1
𝛷Magnetic flux (H.A)3.439e-3 H.A
BLMagnetic field in torus (T)3.439e+1 T
EmMagnetic energy (J)3.383e+1 J
Inductance (H)3.007e+1 H
FxForce (N)4.680e-1 N

Torus with realistic shuttle in charts