Parametrix's logo

Parametrix

Parametrix's logo Parametrix's logo Parametrix's logo Parametrix's logo
Technical drawing --- Dessin technique --- Dessin industriel --- 2D parametric designs

Magnetic circuit

This page provides an overview of magnetic circuits for modelizing the reluctance motor.

The reluctance motor

The force exercised by a electrical reluctance motor is due to the minimization of the magnetic energy of the magnetic circuit.

Advantages of the reluctance motor:

  • no permanent magnet
  • consists mostly of soft iron and wiring
  • simple mechanics
  • also efficient at high speed
  • only limited by the electrical power source and electrical switching speed

Disadvantages of the reluctance motor:

  • Advanced electronics
  • Requires current sensors and position sensor

Magnetic circuits

Physical laws

Definitions:

  • F{\mathcal{F}} : magnetomotive force (unit: A{A})
  • Φ{\varPhi} : magnetic flux (unit: Wb{Wb} or H.A{H.A} or kg.m2.s2.A1{kg.m^2.s^{-2}.A^{-1}})
  • R{\mathcal{R}} : reluctance (unit: H1{H^{-1}} or kg1.m2.s2.A2{kg^{-1}.m^{-2}.s^2.A^2})
  • N{N} : number of wire loops
  • i{i} : electric current in one wire loops (unit: A{A})
  • L{L} : length of the magnetic circuit (unit: m{m})
  • S{S} : area of a section of the magnetic circuit (unit: m2{m^2})
  • H{H} : magnetizing field (unit: A.m1{A.m^{-1}})
  • B{B} : magnetic flux density (unit: T{T} or kg.s2.A1{kg.s^{-2}.A^{-1}})
  • μ{\mu} : magnetic permeability (unit: H.m1{H.m^{-1}} or kg.m.s2.A2{kg.m.s^{-2}.A^{-2}})
  • μ0{\mu_0} : vacuum magnetic permeability : μ0=1.256×106H.m1{\mu_0 = 1.256 \times 10^{-6} H.m^{-1}}

Laws at macroscopic scale (from integral equations):

  • F=Ni{\mathcal{F} = Ni}
  • Φ=FR{\varPhi = \frac{\mathcal{F}}{\mathcal{R}}}
  • R=LμS=Lμrμ0S{\mathcal{R} = \frac{L}{\mu S} = \frac{L}{\mu_r \mu_0 S}}

Laws at microscopic scale (from differential equations):

  • H=FL=ΦμS{H = \frac{\mathcal{F}}{L} = \frac{\varPhi}{\mu S}}
  • B=ΦS=μH=μrμ0H{B = \frac{\varPhi}{S} = \mu H = \mu_r \mu_0 H}
  • μ=μrμ0=BH{\mu = \mu_r \mu_0 = \frac{B}{H}}

Energy:

  • um{u_m} : magnetic energy density (unit: J.m3{J.m^{-3}} or kg.m1.s2{kg.m^{-1}.s^{-2}})
  • um=BH2=B22μ=B22μrμ0{u_m = \frac{B H}{2} = \frac{B^2}{2 \mu} = \frac{B^2}{2 \mu_r \mu_0}}
  • Em{E_m} : energy of a magnetic circuit (unit: J{J} or kg.m2.s2{kg.m^2.s^{-2}})
  • Em=Vum{E_m = \int_V u_m}

Electrical circuit:

  • e{e} : electromotive force of a turn (unit: V{V} or kg.m2.s3.A1{kg.m^2.s^{-3}.A^{-1}})
  • u{u} : electromotive force of the winding (unit: V{V} or kg.m2.s3.A1{kg.m^2.s^{-3}.A^{-1}})
  • L{\mathcal{L}} : inductance of a solenoid (unit: H{H} or kg.m2.s2.A2{kg.m^2.s^{-2}.A^{-2}})
  • e=dΦdt{e = -\frac{d \varPhi}{d t}}
  • u=Ne=NdΦdt{u = N e = -N \frac{d \varPhi}{d t}}
  • if R{\mathcal{R}} constant over time
    • u=N2Rdidt{u = -\frac{N^2}{\mathcal{R}} \frac{d i}{d t}}
    • Let's define L=N2R{\mathcal{L} = \frac{N^2}{\mathcal{R}}}
    • L=N2R=NΦi=μN2SL{\mathcal{L} = \frac{N^2}{\mathcal{R}} = \frac{N \varPhi}{i} = \frac{\mu N^2 S}{L}}
    • u=Ldidt{u = -\mathcal{L} \frac{d i}{d t}}
    • NΦ=Li{N \varPhi = \mathcal{L} i}
    • Em=Timeiu=TimeiLdidt=Li22{E_m = \int_{Time} i u = \int_{Time} i \mathcal{L} \frac{d i}{d t} = \frac{\mathcal{L} i^2}{2}}

Regular torus

regular torus
  • L=2πR{L = 2 \pi R} (length of the torus)
  • F=Ni{\mathcal{F} = N i}
  • R=LμS{\mathcal{R} = \frac{L}{\mu S}}
  • Φ=FR=μSNiL{\varPhi = \frac{\mathcal{F}}{\mathcal{R}} = \frac{\mu S N i}{L}}
  • B=ΦS=μNiL{B = \frac{\varPhi}{S} = \frac{\mu N i}{L}}
  • Em{E_m} =Vum{= \int_V u_m} =VB22μ{= \int_V \frac{B^2}{2 \mu}} =B22μLS{= \frac{B^2}{2 \mu} L S} =μSN2i22L{= \frac{\mu S N^2 i^2}{2 L}} =Li22{= \frac{\mathcal{L} i^2}{2}}
  • L=μSN2L=μrμ0SN2L{\mathcal{L} = \frac{\mu S N^2}{L} = \frac{\mu_r \mu_0 S N^2}{L}}
Material Relative permeability
Air 1
Iron 99.95 200 000
Iron 99.8 5000
Soft iron 5000
Cobalt 250
Nickel 600
Cobalt-iron 18000
Mu-matierial 50 000
Permalloy (nickel-iron) 1000 000
Symbol Parameter Value
μr{\mu_r} Relative permeability
R Torus radius (mm)
S{S} Torus section area (mm2{mm^2})
N{N} Number of turns
i{i} Current in the winding (A)
L{L} Torus length (mm) 94.2 mm
F{\mathcal{F}} Magnetomotive force (A) 6.000e+3 A
R{\mathcal{R}} Reluctance (H1{H^{-1}}) 1.500e+5 H1{H^{-1}}
Φ{\varPhi} Magnetic flux (H.A{H.A}) 4.000e-2 H.A
B{B} Magnetic field (T{T}) 4.000e+2 T
Em{E_m} Magnetic energy (J{J}) 1.200e+2 J
L{\mathcal{L}} Inductance (H{H}) 1.067e+2 H

Torus with swelling

torus with swelling
  • F=Ni{\mathcal{F} = N i}
  • R=R1+R2=L1μS1+L2μS2{\mathcal{R} = \mathcal{R}_1 + \mathcal{R}_2 = \frac{L_1}{\mu S_1} + \frac{L_2}{\mu S_2}} =L1S2+L2S1μS1S2{= \frac{L_1 S_2 + L_2 S_1}{\mu S_1 S_2}}
  • Φ=FR=μS1S2NiL1S2+L2S1{\varPhi = \frac{\mathcal{F}}{\mathcal{R}} = \frac{\mu S_1 S_2 N i}{L_1 S_2 + L_2 S_1}}
    • B1=ΦS1=μS2NiL1S2+L2S1{B_1 = \frac{\varPhi}{S_1} = \frac{\mu S_2 N i}{L_1 S_2 + L_2 S_1}}
    • B2=ΦS2=μS1NiL1S2+L2S1{B_2 = \frac{\varPhi}{S_2} = \frac{\mu S_1 N i}{L_1 S_2 + L_2 S_1}}
  • Em{E_m} =VB22μ{= \int_V \frac{B^2}{2 \mu}} =V1B122μ+V2B222μ{= \int_{V_1} \frac{B_1^2}{2 \mu} + \int_{V_2} \frac{B_2^2}{2 \mu}} =B122μL1S1+B222μL2S2{= \frac{B_1^2}{2 \mu} L_1 S_1 + \frac{B_2^2}{2 \mu} L_2 S_2} =μN2i22S1S2L1S2+L2S1{= \frac{\mu N^2 i^2}{2}\frac{S_1 S_2}{L_1 S_2 + L_2 S_1}}
  • L=μN2S1S2L1S2+L2S1{\mathcal{L} = \frac{\mu N^2 S_1 S_2}{L_1 S_2 + L_2 S_1}}
Symbol Parameter Value
L2{L_2} Percentage of torus with L2 (%)
S2{S_2} Percentage of S2 compare to S1 (%)
L1{L_1} Length of L1 (mm{mm}) 66.0 mm
S1{S_1} Area of S1 (mm2{mm^2}) 100.0 mm2{mm^2}
L2{L_2} Length of L2 (mm{mm}) 28.3 mm
S2{S_2} Area of S2 (mm2{mm^2}) 200.0 mm2{mm^2}
F{\mathcal{F}} Magnetomotive force (A) 6.000e+3 A
R{\mathcal{R}} Reluctance (H1{H^{-1}}) 1.275e+5 H1{H^{-1}}
Φ{\varPhi} Magnetic flux (H.A{H.A}) 4.706e-2 H.A
B1{B_1} Magnetic field (T{T}) 4.706e+2 T
B2{B_2} Magnetic field (T{T}) 2.353e+2 T
Em{E_m} Magnetic energy (J{J}) 1.412e+2 J
L{\mathcal{L}} Inductance (H{H}) 1.255e+2 H

Torus with air gap

torus with air gap
  • F=Ni{\mathcal{F} = N i}
  • R=RL+RG=Lμrμ0S+Gμ0S{\mathcal{R} = \mathcal{R}_L + \mathcal{R}_G = \frac{L}{\mu_r \mu_0 S} + \frac{G}{\mu_0 S}} =L+μrGμrμ0S{= \frac{L + \mu_r G}{\mu_r \mu_0 S}}
  • Φ=FR=μrμ0SNiL+μrG{\varPhi = \frac{\mathcal{F}}{\mathcal{R}} = \frac{\mu_r \mu_0 S N i}{L + \mu_r G}}
  • B=ΦS=μrμ0NiL+μrG{B = \frac{\varPhi}{S} = \frac{\mu_r \mu_0 N i}{L + \mu_r G}}
  • Em{E_m} =VB22μ{= \int_V \frac{B^2}{2 \mu}} =V1B22μrμ0+V2B22μ0{= \int_{V_1} \frac{B^2}{2 \mu_r \mu_0} + \int_{V_2} \frac{B^2}{2 \mu_0}} =B22μrμ0LS+B22μ0GS{= \frac{B^2}{2 \mu_r \mu_0} L S + \frac{B^2}{2 \mu_0} G S} =B2S2μrμ0(L+μrG){= \frac{B^2 S}{2 \mu_r \mu0}(L + \mu_r G)} =μrμ0SN2i22(L+μrG){= \frac{\mu_r \mu_0 S N^2 i^2}{2 (L + \mu_r G)}}
  • L=μrμ0SN2L+μrG{\mathcal{L} = \frac{\mu_r \mu_0 S N^2}{L + \mu_r G}}
Symbol Parameter Value
G{G} The thickness of air-gap (m{m})
F{\mathcal{F}} Magnetomotive force (A) 6.000e+3 A
R{\mathcal{R}} Reluctance (H1{H^{-1}}) 8.108e+6 H1{H^{-1}}
Φ{\varPhi} Magnetic flux (H.A{H.A}) 7.400e-4 H.A
BL{B_L} Magnetic field (T{T}) 7.400e+0 T
BG{B_G} Magnetic field (T{T}) 7.400e+0 T
Em{E_m} Magnetic energy (J{J}) 2.220e+0 J
L{\mathcal{L}} Inductance (H{H}) 1.973e+0 H

Torus with shuttle

torus with shuttle top view of air gap and shuttle
  • F=Ni{\mathcal{F} = N i}
    • R=RL+11RG1+1RG2{\mathcal{R} = \mathcal{R}_L + \frac{1}{\frac{1}{\mathcal{R}_{G1}} + \frac{1}{\mathcal{R}_{G2}}}}
    • RL=Lμrμ0AB{\mathcal{R}_L = \frac{L}{\mu_r \mu_0 A B}}
    • RG1=Gμ0xB{\mathcal{R}_{G1} = \frac{G}{\mu_0 x B}}
    • RG2=Gμrμ0(Ax)B{\mathcal{R}_{G2} = \frac{G}{\mu_r \mu_0 (A - x) B}}
    • R=xL(1μr)+μrA(L+G)μrμ0AB(x(1μr)+μrA){\mathcal{R} = \frac{x L (1 - \mu_r) + \mu_r A (L + G)}{\mu_r \mu_0 A B (x (1 - \mu_r) + \mu_r A)}}
    • Rx=0=L+Gμrμ0AB{\mathcal{R}_{x=0} = \frac{L + G}{\mu_r \mu_0 A B}}
    • Rx=A=L(1+μrG)μrμ0AB>Rx=0{\mathcal{R}_{x=A} = \frac{L (1 + \mu_r G)}{\mu_r \mu_0 A B} > \mathcal{R}_{x=0}}
  • Φ=FR{\varPhi = \frac{\mathcal{F}}{\mathcal{R}}} =μrμ0ABNi(x(1μr)+μrA)xL(1μr)+μrA(L+G){= \frac{\mu_r \mu_0 A B N i (x (1 - \mu_r) + \mu_r A)}{x L (1 - \mu_r) + \mu_r A (L + G)}}
    • BL=ΦAB{B_L = \frac{\varPhi}{A B}} =μrμ0Ni(x(1μr)+μrA)xL(1μr)+μrA(L+G){= \frac{\mu_r \mu_0 N i (x (1 - \mu_r) + \mu_r A)}{x L (1 - \mu_r) + \mu_r A (L + G)}}
    • BG1BL{B_{G1} \simeq B_L}
    • BG2BL{B_{G2} \simeq B_L}
  • Em{E_m} =VLBL22μrμ0{= \int_{V_L} \frac{B_L^2}{2 \mu_r \mu_0}} +VG1BG122μ0{+ \int_{V_{G1}} \frac{B_{G1}^2}{2 \mu_0}} +VG2BG222μrμ0{+ \int_{V_{G2}} \frac{B_{G2}^2}{2 \mu_r \mu_0}}
  • L=N2R{\mathcal{L} = \frac{N^2}{\mathcal{R}}}
  • Fx=Emx{F_x = - \frac{\partial E_m}{\partial x}}
Symbol Parameter Value
μr{\mu_r} Relative permeability of the shuttle
A{A} Length of the air-gap (mm{mm})
B{B} Width of the air-gap (mm{mm})
x{x} Shuttle position (%)
S{S} Torus section area (mm2{mm^2}) 100.0 mm2{mm^2}
Sair{S_{air}} Air area (mm2{mm^2}) 50.0 mm2{mm^2}
Sshuttle{S_{shuttle}} Shuttle area (mm2{mm^2}) 50.0 mm2{mm^2}
F{\mathcal{F}} Magnetomotive force (A) 6.000e+3 A
R{\mathcal{R}} Reluctance (H1{H^{-1}}) 1.532e+5 H1{H^{-1}}
Φ{\varPhi} Magnetic flux (H.A{H.A}) 3.917e-2 H.A
BL{B_L} Magnetic field in torus (T{T}) 3.917e+2 T
BGair{B_{Gair}} Magnetic field in air-gap (T{T}) 3.917e+2 T
BGshuttle{B_{Gshuttle}} Magnetic field in shuttle (T{T}) 3.917e+2 T
Em{E_m} Magnetic energy (J{J}) 3.168e+3 J
L{\mathcal{L}} Inductance (H{H}) 1.045e+2 H
Fx{F_x} Force (N{N}) 5.840e+1 N

Torus with realistic shuttle

torus with a realistic shuttle
  • F=Ni{\mathcal{F} = N i}
    • R=RL+RH+11RG1+1RG2{\mathcal{R} = \mathcal{R}_L + \mathcal{R}_H + \frac{1}{\frac{1}{\mathcal{R}_{G1}} + \frac{1}{\mathcal{R}_{G2}}}}
    • RL=Lμrμ0AB{\mathcal{R}_L = \frac{L}{\mu_r \mu_0 A B}}
    • RG1=Gμ0xB{\mathcal{R}_{G1} = \frac{G}{\mu_0 x B}}
    • RG2=Gμrμ0(Ax)B{\mathcal{R}_{G2} = \frac{G}{\mu_r \mu_0 (A - x) B}}
    • RH=Hμ0AB{\mathcal{R}_H = \frac{H}{ \mu_0 A B}}
  • Φ=FR{\varPhi = \frac{\mathcal{F}}{\mathcal{R}}}
    • BL=BH=ΦAB{B_L = B_H = \frac{\varPhi}{A B}}
    • BG1BL{B_{G1} \simeq B_L}
    • BG2BL{B_{G2} \simeq B_L}
  • Em{E_m} =VLBL22μrμ0{= \int_{V_L} \frac{B_L^2}{2 \mu_r \mu_0}} +VG1BG122μ0{+ \int_{V_{G1}} \frac{B_{G1}^2}{2 \mu_0}} +VG2BG222μrμ0{+ \int_{V_{G2}} \frac{B_{G2}^2}{2 \mu_r \mu_0}} +VHBH22μ0{+ \int_{V_H} \frac{B_H^2}{2 \mu_0}}
  • L=N2R{\mathcal{L} = \frac{N^2}{\mathcal{R}}}
  • Fx=Emx{F_x = - \frac{\partial E_m}{\partial x}}
Symbol Parameter Value
H{H} Thickness of slack (mm{mm})
x{x} Shuttle position (%)
F{\mathcal{F}} Magnetomotive force (A) 6.000e+3 A
R{\mathcal{R}} Reluctance (H1{H^{-1}}) 1.745e+6 H1{H^{-1}}
Φ{\varPhi} Magnetic flux (H.A{H.A}) 3.439e-3 H.A
BL{B_L} Magnetic field in torus (T{T}) 3.439e+1 T
Em{E_m} Magnetic energy (J{J}) 3.383e+1 J
L{\mathcal{L}} Inductance (H{H}) 3.007e+1 H
Fx{F_x} Force (N{N}) 4.680e-1 N

Torus with realistic shuttle in charts